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Abstract
This paper is devoted to a class of fourth-order uniformly elliptic equations
posed by Schaefer in 1987. We obtain maximum principles for certain
functions, which are defined on solutions of the elliptic equations. The
principles are then used to deduce some bounds on important quantities in
the physical problems of interest.

PACS numbers: 02.30.Jr, 02.60.Lj

1. Introduction

In 1972, Dunninger [1] first obtained a maximum principle for a fourth-order elliptic equation.
This showed that any nonconstant solution u of

�2u + cu = 0 c > 0 in � ⊂ Rn

�u = 0 on ∂�

satisfies the inequality

|u(x)| � |u(x0)| x ∈ �

for some point x0 on the boundary ∂� of �, where � is the Laplacian, �2 = �(�).

Later, several authors extended this work (see, for example, [2–5] etc). In 1987, Schaefer
[6] found that the function V (x) of the solution u ∈ C4(�) of

�2u + g(x, u,�u) + p(x)f (u) = 0 in � (∗)

under some assumptions satisfies the inequality

V (x) � V (x0) x ∈ �

for some point x0 on the boundary ∂� of �, where

V (x) := u,iu,i + γ (�u)2 + 2γp(x)

∫ u

0
f (s) ds.
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In [6], Schaefer posed an open problem of whether there are analogous results when �u

is replaced by uniformly elliptic operator Lu = aiju,ij in equation (∗). For the following
equation

L2u + g(x, u,Lu) + p(x)f (u) = 0 in �

the usual methods are infeasible, owing to the higher order and nonconstant coefficients aij ,
so the problem has so far remained open.

In this paper, the problem is resolved completely. Here, the function V (x) takes the form

V (x) := u,iu,i + γ (Lu)2 + 2γp(x)

∫ u

0
f (s) ds.

We show that V (x) satisfies the maximum principle. In the process of computing LV , it is
difficult to deal with the term of aiju,iku,jk − aij,ku,ku,ij . Compared with the case aij = δij in
[1], it is more complicated in the case aij �= δij . However, the difficulty is properly solved by
using the matrix technique. Our main results are presented in theorems 1 and 2 of section 2.
In section 3, we deduce certain bounds for quantities of interest in some physical problems,
such as, the solution of the equation, gradient of the solution and so on.

For simplicity, we use the summation convention and denote partial derivatives ∂u
∂xi

by u,i

and ∂2u
∂xi∂xj

by u,ij .

2. Maximum principles

Consider the equation

L2u + g(x, u,Lu) + p(x)f (u) = 0 in � (1)

where � is a nonempty bounded open domain in Rn,Lu := aiju,ij is a uniformly elliptic
operator and aij (x) = aji(x), and aij ∈ C(�). We assume that the coefficient functions
p > 0, p ∈ C(�) and g ∈ C(R × R × �), and functions f and g satisfy the requirements

f ′(s) > 0 sg(x, t, s) � 0. (2)

2.1. Function without gradient term

Letting u ∈ C4(�) ∩ C2(�) be a solution of equation (2.1), we define the function

V (x) := (Lu)2 + 2p(x)F (u) (3)

where F(u) = ∫ u

0 f (t) dt .

Theorem 1. Letting u ∈ C4(�) ∩ C2(�) be a solution of equation (1), where p(x) ∈
C2(�) ∩ C(�) and f (u) ∈ C1(R), p(x) > 0 and Lp−1 � 0, f ′(u) > 0, F (u) � 0 and
2F(u)F ′′(u) − [F ′(u)]2 � 0, then g satisfies equation (2) and V (x) defined in equation (3)
satisfies

V (x) � V (x0) x ∈ � (4)

where x0 is some point on ∂�.

Proof. By a straightforward computation of the uniformly elliptic operator, we have

LV = 2akl(Lu),k(Lu),l + 2(Lu)(L2u) + 2(Lp)F + 2f (aklp,ku,l + aklu,kp,l)

+ 2pf (Lu) + 2pf ′(aklu,ku,l). (5)
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Furthermore, from equations (1) and (5) we can write

LV = 2akl(Lu),k(Lu),l − 2(Lu)g(x, u,Lu) + 2pf ′
[
akl

(
u,k +

fp,k

pf ′

) (
u,l +

fp,l

pf ′

)]

+ 2(Lp)F − 2f 2

pf ′ (aklp,kp,l). (6)

From p > 0, Lp−1 � 0, i.e. p(Lp) − 2aklp,kp,l � 0, it follows that

(Lp)F − f 2

pf ′ (aklp,kp,l) � aklp,kp,l

pf ′ (2FF ′′ − F ′2). (7)

Using equations (6) and (7) we have

LV � 2

[
akl(Lu),k(Lu),l − (Lu)g(x, u,Lu) + pf ′akl

(
u,k +

fp,k

pf ′

) (
u,l +

fp,l

pf ′

)

+
aklp,kp,l

pf ′ (2FF ′′ − F ′2)
]

. (8)

The uniform ellipticity of the operator L and the assumptions of theorem 1 guarantee that the
right-hand side of equation (8) is non-negative. Thus, LV � 0 and the conclusion (4) follows
immediately from Hopf’s first maximum principle. �

2.2. Function with gradient term

Letting u ∈ C4(�) ∩ C2(�) be a solution of equation (1), we define the function

V (x) := |∇u|2 + γ (Lu)2 + 2γp(x)F (u) (9)

where γ is a positive constant to be chosen and F(u) is a primitive function of the function
f , i.e. F(u) = ∫ u

0 f (t) dt .
We deduce the maximum principles of the functional V (x) now given by equation (9).
Analogous with the proof of theorem 1, by a straightforward calculation, we have

LV = 2aiju,iku,jk + 2u,k(Lu,k) + 2γ [aij (Lu),i(Lu),j − (Lu)g(x, u,Lu)

+ F(Lp) + f aij (u,ip,j + p,iu,j ) + pf ′aiju,iu,j ]. (10)

Now let α be any constant satisfying p(x) � p0 > α > 0 and P = P(x) = p(x) − α. By
changing the form of 2u,k(Lu,k), we have

LV = (2aiju,iku,jk − 2u,kaij,ku,ij ) + 2u,k(Lu),k + 2γ [aij(Lu),i(Lu),j − (Lu)g(x, u,Lu)

+ αf ′aiju,iu,j + {F(LP) + f aij (u,iP,j + P,iu,j ) + Pf ′aiju,iu,j }]. (11)

First, we handle the first item on the right-hand side of equation (11). Denoting by (Aij ) the
matrix which is the inverse of positive definite matrix (aij ), we see that, for arbitrary n × n

matrix (Spk),

aij

(
u,ik +

AipSpk

2

) (
u,jk +

AjqSqk

2

)
� 0.

Therefore, the inequality

Sjku,jk � − aiju,iku,jk − ApqSpkSqk

4
(12)

is valid for any matrix (Sjk). By choosing Sij = −aij,ku,k in equation (12) we obtain

aiju,iku,jk − aij,ku,ku,ij � −Apqapk,iaqk,ju,iu,j

4
. (13)
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Clearly, the second term in equation (11) can be turned into

2u,k(Lu),k = |u,k + (Lu),k|2 − u,ku,k − (Lu),k(Lu),k. (14)

We finally complete the square in the brackets in equation (11), i.e.

F(LP) + f aij (u,iP,j + P,iu,j ) + Pf ′aiju,iu,j

= F(LP) + Pf ′aij

(
u,i +

fP,i

Pf ′

) (
u,j +

fP,j

Pf ′

)
− f 2

Pf ′ aijP,iP,j .

Now let f and F satisfy the requirements

f ′(u) � β > 0 F(u) > 0 2F(u)F ′′(u) − [F ′(u)]2 � 0 (15)

P(x) satisfies the requirement

P(LP) − 2aijP,iP,j � 0 (16)

which is equivalent to LP−1 � 0. Under these additional assumptions, we can write

F(LP) + f aij (u,iP,j + P,iu,j ) + Pf ′aiju,iu,j � Pf ′aij

(
u,i +

f P,i

Pf ′

) (
u,j +

f P,j

Pf ′

)

+
aijP,iP,j

Pf ′ (2FF ′′ − F ′2) � 0. (17)

Consequently, we obtain by equations (11), (13), (14) and (17)

LV � (2γ aij − δij )(Lu),i(Lu),j +

(
2αβγ aij − δij − Apqapm,iaqm,j

2

)
u,iu,j

+ 2γPf ′aij

(
u,i +

f P,i

Pf ′

) (
u,j +

f P,j

Pf ′

)
+ 2γ

(
aijP,iP,j

Pf ′

)
(2FF ′′ − F ′2)

+ |u,k + (Lu),k|2 − 2γ (Lu)g(x, u,Lu). (18)

Since (aij ) is uniformly positive definite, the right-hand side of equation (18) is positive for
a sufficiently large value of γ . This value of γ depends only on constants α and β, and the
coefficients aij and their first derivatives. Hence V (x) is subharmonic. In summary, we have
the following result.

Theorem 2. Let u ∈ C4(�) ∩ C2(�) be a solution of equation (1). If aij (x) ∈ C1(�),

p(x) ∈ C4(�), f (u) ∈ C1(R) and the functions p, f and g satisfy the requirements

(i) p(x) � p0 > α > 0 for some constant α, and LP−1 � 0, where P(x) = p(x) − α;
(ii) f (0) = 0, f ′(u) � β > 0 for some constant β, and 2F(u)F ′′(u) − [F ′(u)]2 � 0;

(iii) sg(x, t, s) � 0;
then there is a positive constant γ depending only on α, β, aij and aij,m such that the function
V (x) given by (9) satisfies the maximum principle in �, i.e.

V (x) � V (x0) x ∈ �

where x0 is some point on ∂�.
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3. Applications: bounds for |∇u|, u and uniformly elliptic operator Lu

By theorem 1 one can easily obtain bounds for the uniformly elliptic operator Lu and the
solution of (1).

Corollary 1. Let u be a sufficiently smooth solution of equation (1). Suppose that the
assumptions of theorem 1 are satisfied and F is an even function. Then

|u(x)| � |u(x0)|
for all x ∈ � and some point x0 ∈ ∂� provided Lu = 0 on ∂� and p(x0) � p(x).

Proof. In theorem 1 the subharmonic function V (x) obtains its maximum at some point, say
x0 on the boundary of �. Thus it follows that

(Lu(x))2 + 2p(x)

∫ u(x)

0
f (t) dt � (Lu(x0))

2 + 2p(x0)

∫ u(x0)

0
f (t) dt .

However, since Lu(x0) = 0, it yields

2p(x)

∫ u(x)

0
f (t) dt � (Lu(x))2 + 2p(x)

∫ u(x)

0
f (t) dt � 2p(x0)

∫ u(x0)

0
f (t) dt .

In addition to p(x) � p(x0) > 0, we have

|u(x)| � |u(x0)|
for all x ∈ �, which proves the desired result. �
Corollary 2. Let u be a sufficiently smooth solution of equation (1). Suppose that the
assumptions of theorem 1 are satisfied, then

|Lu(x)| � |Lu(x0)|
for all x ∈ � and for some point x0 ∈ ∂� provided u = 0 on ∂�.

Proof. It follows from theorem 1 that at some point x0 ∈ ∂�

(Lu(x))2 + 2p(x)F (u(x)) � (Lu(x0))
2 + 2p(x0)F (u(x0)).

However, u(x0) = 0, hence F(u(x0)) = 0, which yields

(Lu(x))2 � (Lu(x))2 + 2p(x)F (u(x)) � (Lu(x0))
2

i.e.

|Lu(x)| � |Lu(x0)|
for all x ∈ �. This proves the desired result. �

With analogy to theorem 1, one can also obtain bounds for the uniformly elliptic operator
and the solution of equation (1) from theorem 2. In particular, we can obtain the bound for
the gradient of the solution (1), and the bound does not depend on the value of solution at the
point in question.

Corollary 3. Let u be a sufficiently smooth solution of equation (1). Suppose that the
assumptions of theorem 2 are satisfied, then there is a positive constant γ = γ (α, β, aij , aij,k)

such that

|∇u(x)|2 � |∇u(x0)|2 + γ [Lu(x0)]
2 + 2γp(x0)

∫ u(x0)

0
f (t) dt

for all x ∈ �, and for some point x0 ∈ ∂�.

The proof of this corollary is easily achieved by theorem 2.
We have only briefly indicated how theorems 1 and 2 in section 2 can be utilized to obtain

point-wise bounds. Many other similar applications of the principles in section 2 can be found
in [5] and [7].
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